Paper 2 Option J

Further Mechanics 1 Mark Scheme (Section A)

Question	Scheme	Marks	AOs
1(a)	Using the model and $v^{2}=u^{2}+2 a s$ to find v	M1	3.4
	$v^{2}=2 a s=2 g \times 2.4=4.8 g \quad \Rightarrow \quad v=\sqrt{ }(4.8 g)$	A1	1.1b
	Using the model and $v^{2}=u^{2}+2 a s$ to find u	M1	3.4
	$0^{2}=u^{2}-2 g \times 0.6 \Rightarrow u=\sqrt{ }(1.2 g)$	A1	1.1b
	Using the correct strategy to solve the problem by finding the sep. speed and app. speed and applying NLR	M1	3.1b
	$e=\sqrt{ }(1.2 g) / \sqrt{ }(4.8 g)=0.5 *$	A1*	1.1b
		(6)	
(b)	Using the model and $e=$ sep. speed / app. speed, $v=0.5 \sqrt{ }(1.2 g)$	M1	3.4
	Using the model and $v^{2}=u^{2}+2 a s$	M1	3.4
	$0^{2}=0.25(1.2 g)-2 g h \Rightarrow h=0.15(\mathrm{~m})$	A1	1.1b
		(3)	
(c)	Ball continues to bounce with the height of each bounce being a quarter of the previous one	B1	2.2b
		(1)	
(10 marks)			
Notes:			
(a) M1: For a complete method to find v A1: For a correct value (may be numerical) M1: For a complete method to find u A1: For a correct value (may be numerical) M1: For finding both v and u and use of Newton's Law of Restitution A1*: For the given answer			
(b) M1: For use of Newton's Law of Restitution to find rebound speed M1: For a complete method to find h A1: For 0.15 (m) oe			
(c) B1: For a clear description including reference to a quarter			

Question	Scheme	Marks	AOs
2(a)	Energy Loss $=$ KE Loss - PE Gain	M1	3.3
	$=\frac{1}{2} \times 0.5 \times 25^{2}-0.5 g \times 20$	A1	1.1b
	$=58.25=58(\mathrm{~J})$ or $58.3(\mathrm{~J})$	A1	1.1b
		(3)	
(b)	Using work-energy principle, $20 R=58.25$	M1	3.3
	$R=2.9125=2.9$ or 2.91	A1ft	1.1b
		(2)	
(c)	Make resistance variable (dependent on speed)	B1	3.5c
		(1)	
(6 marks)			
Notes:			
(a) M1: For a difference in KE and PE A1: For a correct expression A1: For either 58 (2sf) or 58.3 (3sf)			
(b) M1: For use of work-energy principle A1ft: For either 2.9 (2sf) or 2.91 (3sf) follow through on their answer to (a)			
(c) B1: For variable resistance oe			

Question	Scheme	Marks	AOs
3(a)	Force $=$ Resistance (since no acceleration) $=30$	B1	3.1b
	Power $=$ Force \times Speed $=30 \times 4$	M1	1.1b
	$=120 \mathrm{~W}$	A1 ft	1.1b
		(3)	
(b)	Resolving parallel to the slope	M1	3.1b
	$F-60 g \sin \alpha-30=0$	A1	1.1b
	$F=70$	A1	1.1b
	Power $=$ Force \times Speed $=70 \times 3$	M1	1.1b
	$=210 \mathrm{~W}$	A1 ft	1.1b
		(5)	
(8 marks)			
Notes:			
(a) B1: For M1: For A1ft: For	For force $=30$ seen For use of $P=F v$ For 120 (W), follow through on their ' 30 '		
(b) M1: For A1: For A1: For M1: For A1ft: For	For resolving parallel to the slope with correct no. of terms and 60 g resolved For a correct equation For $F=70$ For use of $P=F v$ For 210 (W), follow through on their ' 70 '		

Question	Scheme	Marks	AOs
4(a)	Use of conservation of momentum	M1	3.1a
	$3 m u-2 m u=3 m v+m w$	A1	1.1b
	Use of NLR	M1	3.1a
	$3 u e=-v+w$	A1	1.1b
	Using a correct strategy to solve the problem by setting up two equations (need both) in u and v and solving for v	M1	3.1b
	$v=\frac{u}{4}(1-3 e)$	A1	1.1b
		(6)	
(b)	$\frac{u}{4}(1-3 e)<0$	M1	3.1b
	$\frac{1}{3}<e \leq 1$	A1	1.1b
		(2)	
(c)	Solving for w	M1	2.1
	$w=\frac{u}{4}(1+9 e) *$	A1 *	1.1b
		(2)	
(d)	Substitute $e=\frac{5}{9}$	M1	1.1b
	$v=-\frac{u}{6}, w=\frac{3 u}{2}$	A1	1.1b
	Use NLR for impact with wall, $x=f w$	M1	1.1b
	Further collision if $x>-v$	M1	3.4
	$f \frac{3 u}{2}>\frac{u}{6}$	A1	1.1b
	$1 \geq f>\frac{1}{9}$	A1	1.1b
		(6)	
(16 marks)			
Notes:			
(a) M1: For A1: For M1: For A1: For M1: For A1: For (b)	use of CLM, with correct no. of terms, condone sign errors a correct equation use of Newton's Law of Restitution, with e on the correct side a correct equation setting up two equations and solving their equations for v a correct expression for v		
(b) M1: For use of an appropriate inequality A1: For a complete range of values of e			
(c) M1: For solving their equations for w A1: For the given answer			

Question 4 notes continued:
(d)

M1: For substituting $e=\frac{5}{9}$ into their v and w
A1: \quad For correct expressions for v and w
M1: For use of Newton's Law of Restitution, with e on the correct side
M1: For use of appropriate inequality
A1: For a correct inequality
A1: For a correct range

Further Mechanics 2 Mark Scheme (Section B)

Question	Scheme	Marks	AOs
5 (a)	Multiply out and differentiate wrt t	M1	1.1 b
	$v=3 t^{2}-16 t+20 \Rightarrow a=6 t-16$	A1	1.1b
		(2)	
(b)	Multiply out and integrate wrt t	M1	1.1b
	$s=\int 3 t^{2}-16 t+20 \mathrm{~d} t=t^{3}-8 t^{2}+20 t(+C)$	A1	1.16
	$\begin{aligned} & t=0, s=0=>C=0 \\ & t=2, s=8-32+40=16 \end{aligned}$	A1	1.1 b
		(3)	
(c)	$s=0 \Rightarrow t^{3}-8 t^{2}+20 t=0$ and $t \neq 0 \Rightarrow t^{2}-8 t+20=0$	M1	2.1
	Explanation to show that $t^{2}-8 t+20>0$ for all t.	M1	2.4
	So $s=0$ has no non-zero solutions, so s is never zero again, so never returns to O *	A1*	3.2a
		(3)	
(8 marks)			
Notes:			
(a) M1: A1: For	For multiplying out and differentiating (powers decreasing by 1) For a correct expression for a		
(b) M1: For A1: For A1: For	For multiplying out and integrating (powers increasing by 1) For a correct expression for s with or without C For $C=0$ and correct final answer		
(c) M1: For equating their s to 0 and producing a quadratic M1: For clear explanation that $t^{2}-8 t+20>0$ for all t (e.g. completing the square or another complete method) $\mathbf{A 1 * : ~ F o r ~ a ~ c o r r e c t ~ c o n c l u s i o n ~ i n ~ c o n t e x t ~}$			

Question	Scheme	Marks	AOs
6(a)	$\cos \alpha=\frac{4}{5}$ or $\sin \alpha=\frac{3}{5}$	B1	1.1b
	$r=4 a \sin \alpha$	B1	1.1b
	Resolving vertically	M1	3.1b
	$T_{1} \cos \alpha-T_{2} \sin \alpha=m g$	A1	1.1b
	Resolving horizontally	M1	3.1b
	$T_{1} \sin \alpha+T_{2} \cos \alpha=m r \omega^{2}$	A1	1.1b
	$T_{1} \sin \alpha+T_{2} \cos \alpha=m r \omega^{2}$	A1	1.1b
	Solving for either tension	M1	2.1
	$T_{1}=\frac{4 m}{25}\left(9 a \omega^{2}+5 g\right) *$	A1*	1.1b
	$T_{2}=\frac{3 m}{25}\left(16 a \omega^{2}-5 g\right) *$	A1*	1.1b
		(10)	
(b)	$\frac{4 m}{25}\left(9 a \omega^{2}+5 g\right)<4 m g$	M1	2.1
	$\frac{3 m}{25}\left(16 a \omega^{2}-5 g\right)>0$	M1	2.1
	$\omega>\sqrt{\frac{5 g}{16 a}}$ or $\omega<\sqrt{\frac{20 g}{9 a}}$	A1	2.2a
	$S=\frac{2 \pi}{\omega}$	M1	1.1b
	$3 \pi \sqrt{\frac{a}{5 g}}<S<8 \pi \sqrt{\frac{a}{5 g}} *$	A1*	1.1b
		(5)	
(c)	String being light implies that the tension is constant in both portions of the string	B1	3.5b
		(1)	
(16 marks)			
Notes:			
(a)			
B1: For correct trig. ratio seen			
B1: For a correct radius expression seen			
M1: For resolving vertically with correct no. of terms and tensions resolved			
A1: For a correct equation			
M1: For resolving horizontally with correct no. of terms and tensions resolved A1A1: For a correct equation			
M1: For solving their two equations to find either tension			
A1*: For the given answer			
A1*: For the given answer			

Question 6 notes continued:
(b)

M1: For use of $T_{1}<4 m g$
M1: For using $T_{2}>0$
A1: For a correct inequality (either) for ω
M1: For use of $S=\frac{2 \pi}{\omega}$ with either critical value
A1*: For given answer
(c)

B1: For a clear explanation

Question 7 notes continued:

(c)

B1: For consideration of symmetry about $y=1$
B1: For $a=1.5$
(d)

M1: For use of tan from an appropriate triangle
A1ft: For a correct equation, follow through on their a
A1: For a correct angle

